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Abstract

The feedback synthesis of linear systems satisfying certain exponential bounds
on their transient behavior is studied. We present sufficient conditions ensuring that
there exists a state feedback matrix such that the closed loop system satisfies a desired
exponential growth bound. Special interest is directed to the case of generating
contraction semigroups, which under certain conditions can be characterized by a
simple growth condition on the kernel of the adjoint of the input matrix. Finally,
bounds using quadratic norms are investigated.

1 Introduction

The study of the asymptotic stability of a dynamical system ignores transient effects,
which are of importance, e.g. in the presence of physical constraints. We therefore are
in need for a notion of stability which takes these transient effects into account. For
example, Figure 1 shows the graph of t 7→

∥∥eAt
∥∥ for a matrix A ∈ R7×7 with spectrum

σ(A) = {−1,−1 ± 10i,−1 ± 20i,−1 ± 25i}. Although asymptotically stable, there exists
a solution of ẋ = Ax for which the norm is amplified by the factor 600 before eventually
decaying. Unfortunately, the spectrum contains little information about the location or
height of these transient excursions.
The study of transient effects is related to such classical design criteria as “overshoot” of
system responses. In [10] a pole-placement technique for SISO discrete-time systems is
studied which reduces the overshoot by an optimization involving linear matrix inequality
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Figure 1: Transient excursions of an asymptotically stable linear system.

constraints. Contraction properties for feedback systems which are bound to modified
quadratic Lyapunov functions have been introduced in [8]. [2] use state-space methods to
stabilize a continuous-time system by seperating the different time-scales of the system.
Transient problems also receive attention in numerical analysis, a chapter in [5] discusses
the behaviour of matrix powers, while [9] attacks the problem of numerically solving the
matrix exponential. The authors conclude that “any algorithm which tries to pass over
the [transient] hump by repeated multiplications is in difficulty” i.e. exploiting the relation
eAt = (eAt/n)n may lead to severe roundoff errors if the transient gain is large.
We proceed as follows. In the next Section 2 a stability concept involving bounds on the
transient behavior is introduced and in Section 3 the special case of matrices generating
contraction semigroups is discussed. In Section 4 we derive conditions which guarantee
the existence of a feedback control such that the solutions of the closed-loop system form
a contraction semigroup. In Section 5 this criterion is weakened to account for transient
motion satisfying given bounds. In the final two Sections 6 and 7 we study the special case
of quadratic norms, which allow for more general statements.

2 Preliminaries

Let ‖·‖ be an arbitrary vector norm on Cn or its associated operator norm on Cn×n; the
standard Euclidean inner product on Cn×Cn is denoted by 〈·, ·〉. The spectrum of a matrix
A ∈ Cn×n is denoted by σ(A), the spectral abscissa of A is given by α(A) = maxλ∈σ(A) Re λ
and the spectral radius by %(A) = maxλ∈σ(A) |λ| . The transposed matrix and the Hermitian
adjoint of a matrix A are denoted by A> and A∗, respectively. For a Hermitian matrix
P , λmax(P ) denotes the maximal eigenvalue. The order relation on the set of Hermitian
matrices Hn is defined by P � Q if P −Q is a positive semidefinite matrix. The identity
matrix of dimension n×n is denoted by In where the index is dropped when the dimension
is clear from the context.
We introduce the following concept of stability and stabilization, where we not only pre-
scribe a decay rate β but also a transient bound M , expanding the notion of exponential
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stability.

Definition 1. Suppose M ≥ 1, β ≤ 0 are given constants. A linear time-invariant system
of the form

ẋ(t) = Ax(t), t ≥ 0, A ∈ Cn×n (1)

is said to be (M, β)-stable with respect to the operator norm ‖·‖ if it satisfies∥∥eAt
∥∥ ≤ Meβt for t ≥ 0. (2)

We will call (1) strictly (M, β)-stable, if the inequalities in (2) are strict,∥∥eAt
∥∥ < Meβt for t > 0, (2’)

it is called strongly (M, β)-stable, if there exists β′ < β such that (1) is (M, β′)-stable. A
linear time-invariant system of the form

ẋ(t) = Ax(t) + Bu(t), t ≥ 0, A ∈ Cn×n, B ∈ Cm×n (3)

is said to be (strictly/strongly) (M, β)-stabilizable by state feedback, if there exists a matrix
F ∈ Cn×m such that the closed loop system ẋ(t) = (A + BF )x(t) is (strictly/strongly)
(M, β)-stable.

Any (M, β)-stable system is exponentially stable with an asymptotic growth rate (or spectral
abscissa) α(A) = maxλ∈σ(A) Re λ ≤ β. The special case M = 1 is treated in following
section.

3 Contractions

Let us first study the case of (M, β)-stability with M = 1, β = 0. A matrix A ∈ Cn×n which
is (strictly, strongly) (M = 1, β = 0)-stable is said to generate a (strict, strong) contraction
semigroup T (t) = eAt, t ≥ 0. Now, the matrix A generates a contraction semigroup if the
closed unit ball B = {x ∈ Cn; ‖x‖ ≤ 1} is forward invariant under the flow of ẋ = Ax,
i.e. for every t > 0 the inclusion eAtB ⊂ B holds. Note that this condition needs only to be
checked for an infinitesimally small t > 0. For this, we only have to study the initial growth
rate of ‖T (t)‖ . This growth rate can be described in terms of convex analysis. Recall that
the dual norm ‖·‖∗ of an arbitrary vector norm ‖·‖ is given by

‖y‖∗ := max{Re 〈y, x〉 | ‖x‖ ≤ 1} = max {|〈y, x〉| | ‖x‖ ≤ 1} .

Two vectors (x, y) ∈ Cn × Cn form a dual pair, if ‖y‖∗ ‖x‖ = 〈y, x〉 6= 0. A normed dual
pair additionally satisfies ‖x‖ = 1 = ‖y‖∗ . By the Hahn-Banach Theorem the set of dual
vectors {y ∈ Cn| (x, y) dual pair} and the set of bidual vectors {x ∈ Cn| (x, y) dual pair}
are never empty.

3



Definition 2. The initial growth rate with respect to the norm ‖·‖ is defined by

µ(A) := sup

{
Re

〈y, Ax〉
〈y, x〉

∣∣∣∣ (x, y) is a dual pair

}
. (4)

In the literature this quantity is sometimes called logarithmic norm [12] or matrix measure
[13]. In the following we collect some facts the proof of which can be found in these
references. For duality issues, we refer to the discussion of dissipativity and duality in [3].

Proposition 3. Suppose that A ∈ Cn×n and ‖·‖ is an operator norm on Cn×n. Then the
initial growth rate of A is also given by

µ(A) = d
dt+

∥∥eAt
∥∥ ∣∣

t=0
= lim

t↘0
t−1 log

∥∥eAt
∥∥

= lim
t↘0

t−1 (‖I + At‖ − 1) = lim
r→∞

(‖rI + A‖ − r)

= inf
{
µ ∈ R; ∀t ≥ 0

∥∥eAt
∥∥ ≤ eµt

}
.

Let us now use (4) to derive a formula for the initial growth rate associated with the
Euclidean norm. This norm is self-dual, i.e. all dual pairs (x, y) are of the form y = x.
Hence

µ2(A) = sup
‖x‖2=1

Re 〈x, Ax〉 = sup
x 6=0

〈x, (A + A∗)x〉
2〈x, x〉

= 1
2
λmax(A + A∗). (5)

For a given positive definite Hermitian matrix P � 0 we introduce the weighted inner
product 〈x, y〉P = 〈x, Py〉 and its associated norm ‖·‖P called the P -norm. Again, a dual
vector of x is uniquely determined, given by y = Px. The initial growth rate associated
with this P -norm is therefore

µP (A) = sup
x 6=0

〈x, Ax〉P + 〈Ax, x〉P
2〈x, x〉P

= sup
x 6=0

〈x, (PA + A∗P )x〉
2〈x, Px〉

. (6)

The next proposition gathers some properties of the initial growth rate µ(A).

Proposition 4. Suppose that µ(·) denotes the initial growth rate associated with ‖·‖ . For
matrices A, A′ ∈ Cn×n and scalars s ∈ C we have

µ(A + A′) ≤ µ(A) + µ(A′), µ(A + sI) = µ(A) + Re s,

−‖A‖ ≤ −µ(−A) ≤ −α(−A), α(A) ≤ µ(A) ≤ ‖A‖

where α(A) is the spectral abscissa.

This proposition allows us to move from arbitrary decay rates β < 0 to contractions with
β = 0 without loss of generality, as by Proposition 3 for t ≥ 0

µ(A) ≤ β ⇐⇒
∥∥eAt

∥∥ ≤ eβt ⇐⇒
∥∥e(A−βI)t

∥∥ ≤ 1 ⇐⇒ µ(A− βI) ≤ 0.

Especially, the initial growth rate serves as an indicator for contractions.
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Corollary 5. The matrix A generates a contraction semigroup if and only if µ(A) ≤ 0.
Moreover, A generates a strong contraction semigroup if and only if µ(A) < 0..

The matrix A is called dissipative with respect to a given norm if µ(A) ≤ 0. In a Hilbert
space context, Corollary 5 is a consequence of a theorem of Lumer and Phillips [14], namely
A is dissipative if and only if it generates a contraction semigroup.
Note that there exist generators A of contraction semigroups which satisfy

∥∥eAt
∥∥ < 1 for

t > 0 but µ(A) = 0. Consider for example the Jordan block J = ( −0.5 1
0 −0.5 ). Then µ(J) = 0,

but for the spectral norm a direct calculation shows
∥∥eJt

∥∥ = 1
2
e−1/2t(

√
4 + t2 + t) which is

strictly less than 1 for t > 0. To avoid such phenomena we will in the following use the
notion of strong contractions and strong (M, β)-stability.
Corollary 5 can also be interpreted as stating that the following three items are equivalent.

• µ(A) < 0,

• ‖·‖ is a (strong) Lyapunov function for ẋ = Ax in the sense that ‖·‖ strictly decays
exponentially along all solutions of ẋ = Ax, x(0) 6= 0.

• A generates a strong contraction.

In Example 8 we will see a matrix that generates a strict but not a strong contraction.

4 Synthesis of Contractions

Now that we have a tool ready at hand which determines if a given system is a contraction,
we go one step further and ask under which conditions a real linear time-invariant control
system of the form

ẋ(t) = Ax(t) + Bu(t), A ∈ Rn×n, B ∈ Rn×m (3)

admits a feedback matrix F ∈ Rm×n such that the closed loop system matrix A − BF
generates a strong contraction. This feedback has to satisfy µ(A−BF ) < 0.
Let us study the case m = 1, i.e. we consider the system

ẋ = Ax + bu, with A ∈ Rn×n, b ∈ Rn. (3’)

We assume a norm of interest ‖·‖ to be given and we denote its dual norm by ‖·‖∗. We set

V + := {x ∈ Rn| y∗b > 0, ∀y : (x, y) is a dual pair} ,

V − := {x ∈ Rn| y∗b < 0, ∀y : (x, y) is a dual pair} ,

V 0 := {x ∈ Rn| ∃ y : (x, y) is a dual pair and y∗b = 0} .

For our first result the following assumptions are needed.
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(A1) V 0 contains a real hyperplane H0 defined by a suitable vector h 6= 0 through

H0 := {x ∈ Rn| h∗x = 0} .

(A2) For all x ∈ H0, ‖x‖ = 1 there is a unique vector y∗ such that (x, y∗) is a normed dual
pair.

We note that (A1) is satisfied for quadractic norms but not for arbitrary norms. In general,
given a specific norm only a few vectors will have this property.

Theorem 6. Consider system (3’) and the norm ‖·‖, and assume that (A1) and (A2)
hold. Then there exists an f ∈ R1×n such that A − bf generates a strict contraction with
respect to ‖·‖ if and only if

y∗Ax < 0 for all y ∈ ker b∗ and x ∈ Rn such that (x, y) is a dual pair. (7)

Proof. If A− bf generates a strict contraction semigroup then equivalently we have for all
dual pairs that

y∗(A− bf)x < 0.

If y ∈ ker b∗ this implies that

y∗(A− bf)x = y∗Ax < 0.

for all x such that (x, y) is a dual pair. This shows necessity of (7).
We now show the existence of a suitable feedback under the assumption that (7) holds.
Let us define the real halfspaces

H+ := {x ∈ Rn| h∗x > 0} , H− := {x ∈ Rn| h∗x < 0} ,

and assume without loss of generality that h∗b > 0. We claim that V + ⊂ H+ and V − ⊂ H−.
It is clearly sufficient to show the first assertion as V + = −V −. First note, that if (x, y) is
a dual pair then y∗b is a subgradient of the convex function

g : t 7→ ‖x + tb‖

at t = 0. If x ∈ V + this implies that the function g is strictly increasing in t = 0 and
therefore for all t ≥ 0. If x ∈ V + ∩H− then as h∗b > 0 we have that x+ t1b ∈ H0 for some
t1 > 0. By Assumption (A1) there exists a dual vector y of x + t1b which satisfies b∗y = 0.
This contradicts convexity of g combined with the property that g is strictly increasing in
t1. As V + ⊂ H+, V − ⊂ H− we have that y∗bh∗x ≥ 0 for all dual pairs (x, y) and it is easy
to see that y∗bh∗x > 0 for all dual pairs (x, y) such that y 6∈ ker b∗, x 6∈ ker h∗. We claim
that for α sufficiently large we have

y∗(A− αbh∗)x < 0
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for all dual pairs (x, y). Note that it is sufficient to prove this on the compact set

Z := {(x, y)| ‖y‖∗ = ‖x‖ = 〈y, x〉 = 1} .

By continuity, the set Z− ⊂ Z of points satisfying y∗Ax < 0 is open in Z. Assumption (A2)
now implies that Z− contains a set of the form

Zε := {(x, y) ∈ Z| −ε < h∗x < ε}

for ε > 0 sufficiently small. Now if (x, y) ∈ Z \ Zε, then |h∗x| ≥ ε. Furthermore there is
a δ > 0 so that y∗Ax ≥ 0 implies |y∗b| > δ, otherwise we obtain a contradiction to (7).
Setting

α := 2
max(x,y)∈Z |y∗Ax|

εδ
> 0

we easily see that
y∗Ax− αy∗bh∗x < 0

for all (x, y) ∈ Z.

Remark 7. We note that the construction in the previous proof relies on a high gain type
argument. We construct h such that always y∗bh∗x ≥ 0 and this quantity is even positive
for the interesting dual pairs (x, y). This implies that if A − α0bh

∗ generates a strict
contraction semigroup the same is true for A−αbh∗ for all α ≥ α0. The following example
shows that such a high gain idea is not feasible in all situations. Let

A =

(
−1 c
−2 d

)
, b =

(
0

1

)
and assume that we want to generate a strict contraction with respect to the 1-norm ‖·‖1 .
The kernel ker b∗ = R

(
1
0

)
and the (unique) vector x such that (x,

(
1
0

)
) is a dual pair is

x = e1. An easy calculation shows (1 0)A
(
1
0

)
= −1 so that condition (7) is satisfied. Note

that H from (A1) has to be H = Re1, but (A2) is not satisfied for H. Also Ae1 is not
pointing inside the unit ball of ‖·‖1 as can be seen by calculating (1 − 1)A

(
1
0

)
= 1 and

noting that (1 − 1)> is dual to e1. If we now consider possible feedback matrices (f1 f2) we
see

A− bf =

(
−1 c

−2− f1 d− f2

)
from which it follows that possible choices for f1 that lead to a matrix infinitesimally
decreasing in e1,i.e. the first column is diagonally dominant, are f1 ∈ (−3,−1). Similarly,
f2 > max{d+c, d−c} ensures that A−bf is pointing inward at e2. Hence A−bf generates
a contraction semigroup with respect to ‖·‖1 if and only if

f ∈
{
[f1, f2] ∈ R1×2

∣∣ f1 ∈ (−3,−1), f2 > max{d + c, d− c}
}

.

In particular, for any choice of f that generates a strict contraction semigroup there is an
α0 such that for all α ≥ α0, A− αbf is not dissipative.
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Figure 2: A closed loop contraction with respect to ‖·‖1.

Example 8. Choosing c = 6, d = −3 in the previous remark gives A = ( −1 6
−2 −3 ). The

allowed feedback matrices [f1, f2] can be selected from f1 ∈ (−3,−1) and f2 > 3. Figure 2
shows a trajectory of ẋ = Ax which leaves the (dotted) unit box of ‖·‖1 and a trajectory
of the closed loop system with f = [−1, 3]. Here A − bf = ( −1 6

−1 −6 ) is only marginally
diagonally dominant. The closed loop system generates a strict contraction but not a strong
contraction. For f = [−3, 3] the closed loop becomes marginally stable as A−bf = ( −1 6

1 −6 ).

To treat the case of higher dimensional input spaces can be easily obtained from Theorem 6.
Again the assumption (A1) and (A2) are crucial. To apply the same arguments as before we
have to assume that for each of the columns of B the assumptions (A1), (A2) are satisfied
individually. Note, however, that using a state transformation R on the input space, this
property might be obtained for the matrix BR, while it is false for B.

Theorem 9. Consider system (3) with A ∈ Rn×n, B ∈ Rn×m and the norm ‖·‖. Assume
that for each column bj of B, j = 1, . . . ,m the properties (A1) and (A2) are satisfied. Then
there exists an F such that A−BF generates a strong contraction if and only if

y∗Ax < 0 for all y ∈ ker B∗ and x ∈ Rn such that (x, y) is a dual pair. (8)

By replacing A with A−βI in Theorem 9 we obtain the following result for arbitrary decay
rates.

Corollary 10. Under the assumptions of Theorem 9 there exists a feedback matrix F ∈
Rm×n for a given decay rate β < 0 such that µ(A − BF ) < β if and only if all dual pairs
(x, y) with y ∈ ker B∗ satisfy y∗Ax < β y∗x.

5 (M, β)-Stability and (M, β)-Stabilizability

In this section let us consider (M, β)-stability instead of contractions. For arbitrary M > 1
we introduce a second norm ν(·), and relate all contraction properties to this norm. To
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obtain results for the given norm ‖·‖ we compare both norms by measuring the deformation
of their unit balls.

Definition 11. Suppose ‖·‖ , ν(·) are norms on Rn. Then the eccentricity of ν(·) with
respect to ‖·‖ is given by

ecc(ν) = ecc‖·‖(ν) :=
max‖x‖=1 ν(x)

min‖x‖=1 ν(x)
. (9)

The initial growth rate of A and the eccentricity of a norm ν(·) provide us with a bound
for

∥∥eAt
∥∥.

Proposition 12. Suppose ν(·) is a norm on Rn with initial growth rate µν(·). Then for
all A ∈ Rn×n, ∥∥eAt

∥∥ ≤ ecc(ν)eµν(A)t, t ≥ 0.

From Proposition 12 we conclude that A is (M, β) stable with respect to ‖·‖ if there exists
a norm ν(·) with ecc(ν) ≤ M and µν(A) ≤ β. On the other hand, for (M, β)-stable
systems it is easily seen that the function ν(x) = supt≥0 e−βt

∥∥eAtx
∥∥ defines a norm for

which µν(A) ≤ 0 and ecc(ν) ≤ M.
Now, let us fix the norm ‖·‖ . To guarantee (M, β)-stabilization we have to find a norm ν
such that ecc ν ≤ M , and a feedback matrix F such that µ(A + BF ) ≤ β.
As the class of norms is very rich–it even includes an exact bound–let us only consider
norms for which eccentricity and initial growth rate are easily computable. Therefore we
consider weighted norms, i.e. if W ∈ Rn×n is an invertible matrix then we define the new
norm νW (x) = ‖Wx‖ . The eccentricity of νW is then given by the condition number of W,
κ(W ) = ‖W‖ ‖W−1‖ ≥ 1. Its initial growth rate can be described as follows.

Proposition 13. Given a vector norm ‖·‖ and a weight matrix W ∈ Rn×n. Then the
initial growth rate with respect to the weighted norm ‖W ·‖ is given by

µ‖W ·‖(A) = sup
(x,y) dual pair of ‖·‖

y∗WAW−1x

y∗x
= µ‖·‖(WAW−1).

Proof. We have to identify the set of dual vectors for the weighted norm. But if (x, y)
is a dual pair of ‖·‖ then the pair (W−1x, W ∗y) is a dual pair with respect to ‖W ·‖, as
‖W (W−1x)‖ = ‖x‖ and 〈W ∗y, W−1x〉 = 〈y, x〉. Proposition 3 now implies the statement
of the proposition.

For (M, β)-stabilizability we obtain from Theorem 9 the following characterization

Corollary 14. Consider system (3) and the norm ‖·‖, and assume that (A1) and (A2)
hold for each column of B. System 3 is strongly (M, β)-stabilizable if there exists W ∈ Rn×n

such that κ(W ) ≤ M and for all dual pairs (x, y) of ‖·‖ with y ∈ ker(WB)∗ the inequality

y∗WAW−1x < βy∗x

holds.
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6 Quadratic (M, β)- Stability

We now specialize the situation by comparing weighted Euclidean norms, i.e. ‖x‖P =√
〈x, Px〉, with the standard Euclidean norm ‖x‖2 . The corresponding stability concept

is called quadratic (M, β)-stability [1].

Definition 15. Given the constants M ≥ 1, β < 0, a matrix A ∈ Rn×n is called quadrati-
cally (M, β)−stable if there exists a positive definite Hermitian matrix P � 0 such that

κ(P ) ≤ M2 and PA + A∗P ≺ 2βP

where κ(P ) = ‖P‖2 ‖P−1‖2 is the spectral condition number of P . A pair (A, B) ∈ Rn×n×
Rn×m is called quadratically (M, β)-stabilizable if there exists a matrix F ∈ Rm×n such that
A−BF is quadratically (M, β)−stable.

If A is quadratically (M, β)-stable then by (6), µP (A) < β. In this case A is the generator of
a semigroup which is strictly contractive with respect to the P -norm. For convenience we
denote PA + A∗P by the Lyapunov operator LA(P ). The growth bound of Proposition 12
now takes the following shape.

Proposition 16. Quadratically (M, β)-stable systems are strongly (M, β)-stable: If A ∈
Rn×n satisfies LA(P ) ≺ 2βP then there exists β′ < β with∥∥eAt

∥∥ ≤ √
κ(P )eβ′t, t ≥ 0. (10)

Proof. A P−norm is also a weighted norm, ‖·‖P =
∥∥P 1/2·

∥∥ where P 1/2 is the Hermitian

matrix square root of P . Since κ(P 1/2) = κ(P )1/2, Proposition 12 implies (10).

The gap between (M, β)-stability and quadratically (M, β)-stability may be quite large.

Example 17. Consider the matrix A = ( −1 2kµ
0 −2µ−1 ) for µ > 1 and k > 0. The spectral norm of

the matrix exponential for a real 2×2 matrix in upper triangular form A = ( λ1 α
0 λ2

), λ1 6= λ2,
is given by∥∥eAt

∥∥ =
1

2

∣∣eλ1t − eλ2t
∣∣ (√

coth(1
2
(λ1 − λ2)t)2 + ( α

λ1−λ2
)2 +

√
1 + ( α

λ1−λ2
)2

)
.

Here we obtain for β = −1 and λ1 = 1, λ2 = −2µ−1, α = 2kµ the monotonously increasing
function∥∥e(A−βI)t

∥∥ = 1
2
(1−e−2µt)

(√
coth(µt)2 + k2 +

√
1 + k2

)
t→∞−−−→

√
1 + k2 as lim

x→∞
coth(x) = 1.

Hence, M =
√

1 + k2 is the smallest possible bound for strict (M, β)-stability with β =
−1. Now let us examine which bound can be obtained using Proposition 16. The strict
Lyapunov inequality PA + A∗P + 2P > 0 is unsolvable, but there exist matrices P > 0
which solve P (A− βI) + (A− βI)∗P ≤ 0 for β = −1. The matrix P = ( p1 p3

p3 p2 ) is a solution
of this inequality if and only if

kp1 − p3 = 0, kp3 − p2 < 0.

10



If we fix p1 = 1 then necessarily p3 = k and p2 > k2. With this choice P is positive definite.
Other solutions are positive scalar multiples of solutions representable in such a manner.
The condition number for a 2× 2 real matrix P > 0 is given by

κ(P ) =
trace P

2 det P

(
trace P +

√
(trace P )2 − 4 det P

)
− 1

which follows from representing λmax/λmin in terms of λmax ·λmin and λmax +λmin. By writing

p2 = k2 +α we get κ(α) = 1+k2+α
2α

(
(1 + k2 + α) +

√
(1 + k2 + α)2 − 4α

)
−1 the minimum

of which is attained at α̃ = 1 + k2. Therefore the best bound obtainable by Proposition 16
is

√
κ(α̃) = k +

√
1 + k2. In this example there is a gap of k between the Lyapunov bound

and the minimal bound M . More interestingly, the quotient k+
√

1+k2√
1+k2 → 2 as k →∞.

The main problem of quadratic (M, β) stability is to find a suitable weight P � 0 such
that both M and β are small. If A is diagonalizable then there exists a regular matrix V
whose columns consist of eigenvectors of A which are not necessarily of unit length. With
the definition of the positive definite matrix P = (V V ∗)−1 Proposition 16 holds with delay
rate equal to the the asymptotic growth rate β′ = α(A). But then different scale factors of
the columns of V lead to different condition numbers of P .

7 Synthesis of Quadratic (M, β)-stable Systems

We now turn to stabilization issues in the quadratic framework. We not only have to
determine the feedback matrix but also a weighting matrix for a suitable inner product to
achieve a quadratic (M, β)-stable system by feedback. Let us state a spectral version of
Theorem 9.

Theorem 18. Consider the pair (A, B) ∈ Rn×n×Rn×m and constants M ≥ 1, β < 0. The
system ẋ = Ax + Bu is quadratically (M, β)-stabilizable if and only if there exists a matrix
P � 0 with κ(P ) ≤ M2 such that

MP (β) ∩ ker B∗P = {0} (11)

where the set MP (β) is given by

MP (β) := {v ∈ Rn; v∗LA(P )v ≥ 2βv∗Pv} . (12)

The set MP (β) consists of those initial values for which the solutions have an initial growth
of at least β, i. e. d

dt

∥∥eAtv
∥∥

P

∣∣
t=0

≥ β ‖v‖P . Thus MP (β) is the subset of the state space
where the dynamics of the uncontrolled system has to be modified in order to meet the
control aim.

Proof. As the initial growth rate for the P−norm is known from (6) and as
∥∥eAt

∥∥ ≤
Meβt ⇐⇒

∥∥e(A−βI)t
∥∥ ≤ M, t ≥ 0, the following equivalences hold for any P -norm

µP (A) < β ⇐⇒ ∀x ∈ Rn\{0} : 〈x, (PA + A∗P )x〉< 2β〈x, Px〉 ⇐⇒ LA(P ) ≺ 2βP (13)
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where the order relation is with respect to the standard inner product. Let us first assume
that there exists a suitable P � 0 with κ(P ) ≤ M2 and MP (β)∩ ker B∗P = {0} . We show
that there exists a feedback matrix F such that µ(A−BF ) < β by considering LA−BF (P ).
Applying a QR-decomposition of B and transforming the data accordingly we have the
following partition of suitably dimensioned blocks.

A =

(
A11 A12

A21 A22

)
, B =

(
R
0

)
, BF =

(
G1 G2

0 0

)
, P =

(
P1 P12

P ∗
12 P2

)
. (14)

With respect to this partition the blocks of LA−BF (P ) take the form

LA−BF (P )11 = LA11−G1(P1) + P12A21 + A∗
21P

∗
12

LA−BF (P )12 = P1(A12 −G2) + P12A22 + (A11 −G1)
∗P12 + A∗

21P2

LA−BF (P )22 = LA22(P2) + P ∗
12(A12 −G2) + (A12 −G2)

∗P12

The largest subspace which is invariant under changes of the feedback matrix is given by
the kernel of B∗P : Since R in (14) is invertible, the kernel of B∗P is spanned by the

columns of
(−P−1

1 P12

I

)
. Here P1 � 0 is invertible as it is a principal submatrix of P � 0. The

term (
−P ∗

12P
−1
1 I

)
LA−BF (P )

(
−P−1

1 P12

I

)
= LA22−A21P−1

1 P12
(P2 − P ∗

12P
−1
1 P12) (15)

does not depend on the choice of the feedback matrix. Hence, for every x ∈ ker B∗P the
term x∗LA−BF (P )x is independent of F.
To achieve a growth rate of at most β, the inequality LA−BF (P ) ≺ 2βP has to hold, see
(13), which transforms into(

I 0
−P ∗

12P
−1
1 I

)
LA−BF (P )

(
I −P−1

1 P12

0 I

)
≺ 2β

(
P1 0
0 P2 − P ∗

12P
−1
1 P12

)
. (16)

Using a Schur complement this is equivalent to the following two conditions

LA22−A21P−1
1 P12−βI(P2 − P ∗

12P
−1
1 P12) ≺ 0,

LA11−G1−βI(P1) + P12A21 + A∗
21P

∗
12 −K∗LA22−A21P−1

1 P12−βI(P2 − P ∗
12P

−1
1 P12)

−1K ≺ 0

(17)

where K is the upper right block of the left hand side matrix product of (16) given by

K = P1(A12 −G2 − (A11 −G1)P
−1
1 P12) + P12(A22 − A21P

−1
1 P12) + A∗

21(P2 − P ∗
12P

−1
1 P12).

The negative definiteness of the first condition is guaranteed by the kernel condition (11)
as (15) then implies for all x ∈ Rm

x∗LA22−A21P−1
1 P12

(P2 − P ∗
12P

−1
1 P12)x < 2βx∗(−P ∗

12P
−1
1 I)P

(−P−1
1 P12

I

)
x

= 2βx∗(P2 − P ∗
12P

−1
1 P12)x.

12



The second condition may be satisfied by choosing F1 in such a way that LA11−G1−βI(P1) ≺
−(P12A21 +A∗

21P
∗
12). Conversely, if the pair (A, B) is quadratically (M, β)-stabilizable then

by definition there exist P � 0 with κ(P ) ≤ M2 and a feedback matrix F such that the
Lyapunov inequality of (13) holds. Then it also holds on ker B∗P, i.e. ker B∗P ∩MP (β) =
{0}.
From the preceding proof we have the following reformulation of the kernel condition (11).

Corollary 19. With the notation from Theorem 18 and from the partition (14) the kernel
condition is equivalent to the negative definiteness of the following Lyapunov matrix,

Mβ(P ) ∩ ker B∗P = {0} ⇐⇒ LA22−A21P−1
1 P12−βI(P2 − P ∗

12P
−1
1 P12) ≺ 0.

This characterization gives necessary conditions on the inner product P as the matrix
A|ker := A22 − A21P

−1
1 P12 has to be stable, P |ker := P2 − P ∗

12P
−1
1 P12 � 0 has to hold, and

LA|ker(P |ker) has to be negative definite. To select a weight P one could proceed as follows.
Choose P1 and P12 such that A22 −A21P

−1
1 P12 is stable. Then choose P2 in such way that

P2 − P ∗
12P

−1
1 P12 is positive definite and

LA|ker(P2) ≺ LA|ker(P
∗
12P

−1
1 P12). (18)

Remark 20. Suppose β < 0 is fixed. If we choose the feedback matrix F to be of the
form F = γB∗P the lognorm condition µP (A − BF ) < β < 0 gives rise to the following
parameterized Riccati inequality

PA + A∗P − 2γPBB∗P − 2βP ≺ 0.

By the previous theorem positive definite solutions P � 0 exist if and only if the kernel
condition (11) holds.

Example 21. Consider the system (3) given by

A =



−1 0 0 0 0 0 −625
0 −1 −30 400 0 0 250
−2 0 −1 0 0 0 30
5 −1 5 −1 0 0 200
11 1 25 −10 −1 1 −200
200 0 0 −150 −100 −1 −1000
1 0 0 0 0 0 −1


, B =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


. (19)

The transient behavior of eAt is plotted in Figure 1, the eigenvalues of A are −1,−1 ±
10i,−1 ± 20i,−1 ± 25i. The vector x = e7 − e6 satisfies x∗Ax = 998, hence the system
is not a contraction with respect to the spectral norm, and as x ∈ ker B∗, there does not
exist a feedback matrix such that the closed loop system is a contraction. The matrix B
is already an upper triangular matrix, hence Corollary 19 is directly applicable. Using the
partition (14) A22 is already stable, hence let us set P12 = 0. We therefore need to find a
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P2 such that LA22(P2) ≺ 0 to ensure that there exists a feedback matrix F such that the
closed loop system overshoots a most κ(P )1/2 where P1 = I, P12 = 0. Using a semidefinite
program we find a positive definite matrix P2 with κ(P2)

1/2 = 315, see [6]. Hence there
exists a feedback matrix such that the transient excursion of closed loop system stays below
315. And indeed choosing F = −10B∗ gives even an excursion below 250, as Figure 3 shows.

Figure 3: Transient humps of the closed loop system.
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